AN ELEMENTARY PROBLEM OF RADIATION KINETICS
WITH ARBITRARY INITIAL CONDITIONS
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§ 1. The nonstationary transfer of line radiation in a heated gas (a low-temperature plasma) is usually
described using the kinetic equation for excited atoms [1]. Depending on the specific situation, problems then
arise regarding the corresponding initial and boundary conditions. The features of the solution due to the dif-
ferent boundary conditions (different configurations of the volume of gas considered, the presence or absence
of reflecting surfaces, etc.) have already been investigated to some extent, although the analysis, as a rule, re-
fers to the stationary analog of the kinetic equation. As far as the initial conditions are concerned, it has been
assumed up to now that at a certain initial instant of time (t =ty there is a uniform distribution of the excited
atoms in the whole volume of gas. In many problems of radiation kinetics this assumption is not justified, for

.example, in a variety of cases of local energy dissipation, laser excitation, skin effect, etc. Thus, there is a
need for a more general formulation of the problem of radiation kinetics (first of all, in its elementary form,
which corresponds to the well-known Biberman — Holstein equation) for any initial distributions of the density
of excited states.

§2. The change with time of the density of excited atoms n of the medium after the excitation has ceased
is given by the equation [1, 2]
Toan_(art’_t)z_n(r,t)—{—j‘n(r{,t)D(r—r’) dr", 2.1)
v

where T, is the spontaneous luminescence time; Dfr — r'} is the probability that a quantum emitted at the point
r' will be absorbed at the point r,
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where %(v) is the absorption factor; H = fn (v)dv. In the case of cylindrical and spherical configurations of the
0

luminous gas, Eq. (2.1) takes the form
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where the time is measured in units of 7, while the coordinate is measured in units of the radius of the sphere
or cylinder (T=R=1).

Equation (2.3) has a solution for any initial density distribution nyr) of the excited atoms:
nirt) = X expl—hntl Cnom (1), @.4)
m=

where Ay and ¢ are the eigenvalues and eigenfunctions of the integral equation, connected by the following
equation [3]:
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The coefficients Cy, are determined by the initial condition

3

1 2 — a sphere,
€= 10 () 0 () o0 -

g Q2 (r)yrodr, o=

»”
1 — acylinder,

§3. For a numerical solution of Eq. (2.3) it is convenient to represent the kernel G(,r') in the form of
an expansion in terms of the optical demsity parameter. '

A Sphere. Integrating in Eq. (2.1) with respect to the nonradial coordinates, we obtain

G(r) =g = | B OUE (=% 0) () = E, (=% W) r —#' 1) o
L] .

where Ej(—x) is the integral exponential function. Using the expans iou [4]

Ei(—z)=c+lnz+ 2(—”2,"‘,
we can obtain
Girr) = 2 T rym = | = o [+ aghy |2 [
where k, is the absorption factor at the center of the line
= ?LA) (0™ a. (3.2)
0

A Cylinder. Introducing cylindrical coordinates, we obtain from Eq. (2.2)

2n oo

’ %2 (v) exp (—x(v)qz) ,
G(rur) = g | 8 f dv [ A rda,
0 3.2)

q = (r*+r'* —2rr' cos )12,

Using the Hubler integral representation for cylindrical functions

Ka(®) = S——-—"""jﬁfz’ ds,

Eq. (3.2) can be converted to the following form which is more convenient for expansion:

25 w(v)q
6(rv) =gy dmjx?(v)[—~ f K, (g)dg]—dv, 3.3)

where Ky(¢) is the cylindrical function of imaginary argument (the Macdonald function) defined by the series
expansion [4]

> 2m
K, ) — _0(%.2;))2 fpm--1) —In %} 3.4)
P(z) = d 1o I'(z)/dzx.

l‘ds

For an integral argument it is equal to (m--1) = —c -+ li, where ¢ =0.5772 is Euler's constant,

il
L

1=
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Using Eq. (3.4), integration with respect to ¢ in Eq. (3.3) leads to the following expressions:
o J——K(r/r) r>r
1 dp
L:TE__|
o 7 ‘ K(lry r<r',

where K(x) is the complete elliptic integral of the first kind;
om -

S N (=]
0
1 1 0S8
U,= Tj‘qzllluqdcp=70—}:‘;
0

and Py () is the Legendre function.

For integral p=m, Um and Sy, can be calculated using the recurrent relation for Pu [4]. After simple
calculations we obtain

@p + HPu@) = (1 -+ DPyis(@) + pPy (),
Po(x) = 11 Pl(‘z) =z,
Smas = (14 523) 02+ 7% S — g7 472 S
8o = 2, S; = 202 + '),

Um-l-1=(1+m"_;1)(r2+r;2)Um m—l—ilr -7 lUm..1+2(m+1)2(r +r3)S,, m,rz—r'zl&n_i,

2 2 _
Uo=lnr—‘———_rr, +Ir2 A Ia

= (2 + U, + 1) — |2 — 2.

Introducing the integrals with respect to frequency
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_ vy n(v) % (v
b"‘_bf—ll_(k,) ln—z)dv,

we can write the final expression for G, r'):
ko 2m+1
Gr ) = ra,l i (5"
rr') =raL + T 0 Gl (U — 8n/(2m + 1) — Spp (m + 1)) Gom 11 + Smbomsal,

where g, are defined by Eq. (3.1). In the case of Doppler and dispersion profiles of the absorption lines, the
integrals a , and by, can be calculated accurately: for the Doppler profile

% (v) = k, exp {— (VA—V;)z}, ap = 1/(m 3 2)\2,
b = amlln (ky/2) — 1/2(m + 2)1;

and for the dispersion profile

(r/2)
O (v—vo - (T72)"

m
__ (em+2) _ ky t
= {(m + 1)1jp22m+2" b = [ln g + ; i(2i-1)]'

We will only consider these profiles below, since a consideration of more complex cases for example,
a Voigt profile) involves no essential difficulties and merely involves more complex calculations.

(V) =k

§4. Inthe section [0.1]2N+1 we choose equally spaced ry, ..., ryy +4 and we consider the corresponding
discrete version of Eq. (2.3):

1
2 - —nut + feCar i g, @D
0

Suppose the division step h=1/2N. Then in each section of length 2h we can replace n{r,t) approximately by a
section of a parabola

O

)(r l) (r 1+1) _ri—i) (r 1+i)
h2

+a,nl

nrt)y=n(r,_,t
Integrating over the radius, Eq. (4.1) becomes the system of linear equations
] (t)
n; EA”YLJ (t), ni(t) = n(rl, t)., A” = —5;; + G,‘j, (4.3)

where Gjj is the result of integratlon of G with weights from Eq. (4.2). The integration was carried out on a
computer. System (4.3) has the solution

2N+1{

n; (t) = "E‘ Cm exp (_ A‘mt) Yims (4‘4)

where A, and yim are the eigenvalues and corresponding eigenvectors of the matrix Ajj. The coefficients Cy
can be found from the initial condition

2N41
n, (0) = 21 Cmyim' (4-5)

The first 2N +1 terms in Eq. (2.4) correspond to expression (4.4).

§5. Asan example we will choose the initialdistribution ny(r) =exp {- [(r—~r)/0]%}. Theattenuation pattern
for spherical geometry, a Doppler profile, and ry=0.6, 02=0.1, and k=3 is shown in Fig. 1. The result of
calculations for the case of cylindrical geometry and a dispersion profile is shown in Fig, 2 (r,=0.5, ¢ 2=0.1,
and ky=3). In both cases curve 1 corresponds to t=0, curve 2 corresponds to t =1, curve 3 corresponds to t=2,
curve 4 corresponds to t =3, and curve 5 corresponds to t =4.

We will put min {A}= A3 7= 1/, corresponding to the eigenfunction y(r). It is seen from Eq. (2.4) that for
fairly large times

ni(t) = Cy; exp [—tit]. (6.1)
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Asymptotic expressions for 7 for large optical thicknesses kg are given in [1] as they apply to a cylindri-
cal geometry of the volume of gas

T = ko(m In k;)/2/1.60 (5.2)

for a Doppler profile and
T = (mky)2/1.415 (5.3)

for a dispersion profile. (In our choice of variables, 7 and k; are dimensionless quantities.) It is interesting
to compare Eqgs. (5.2) and (5.3) with the accurate values obtained in the present paper. The results of such a
comparison are shown in Fig. 3. Curves 1 and 2 correspond to Doppler and dispersion profiles in the case of
cylindrical geometry, the dashed curves correspond to Holstein's estimate, and curves 3 and 4 correspond to
the same profiles in the case of spherical geometry. It is seen that if only a rough estimate of the quantity of
approximately 10% is sufficient, one can use Eqs. (5.2) and (5.3) beginning at k;=>5; here, for comparison, we
have given the values of 7 relating to the case of a spherical configuration. It is seen that a sphere is de-ex-
cited more rapidly, as is, of course, obvious from qualitative considerations. In [5] the nonstationary equation
(2.3) was solved for the case of a cylindrical configuration and a dispersion profile of the absorption line, and
the case of large values of k, was investigated. As might have been expected, the results of the present paper
agree with those of [5] for fairly large values of k.

Having a complete set of eigen numbers A , it is easy to estimate the time of emergence T on the asymp-
tote (5.1):
T = In (C4/Ce)/ Ak, (.4

where £ is the relative difference between (5.1) and (4.5), AA is the difference between A and the eigen number
closest to it, and C, is the corresponding coefficient in Eq. (4.5). Figure 4 shows the ratio T/7 as a function of
the optical thickness in the case of a sphere (curve 1 is for a dispersion profile and curve 2 is for a Doppler
profile). It is seen that for large values of the optical thickness T/r =const.

This result must be understood in the sense that for large optical thicknesses, as shown in [51, all the
eigen numbers are described by relations of the types (5.2) and (5.3). Numerical estimates are in good agree-
ment with Eq. (5.4), and the value of T depends only slightly on the initial distribution. itial distributions to
which there corresponds aparticle density in a certain small region are an exception. In this case the time of
emergence on the asymptote increases considerably. Figure 5 shows graphs of the solution normalized to unity
at the center of the sphere; the dashed curves represent the eigenfunction y(@r). Curves 1-4 are for solutions
with a constant initial value (0 =), and the time step is 2.5. Curves 5-8 represent similar solutions in which
02=0.1 and ry=0. It is seen that the second group of solutions approaches the asymptote much more slowly.
Note that according to Eq. (5.4), if C;=C, then n(T) ~&en(0), i.e., at the instant when Eq. (5.1) begins to be satis-
fied the volume of gas is already practically de~excited.

In conclusion, we note that the problem of radiation kinetics considered above for arbitrary initial condi-
tions and its elementary formulation can also be formulated in a much more general form (see, for example,
[6]). The approach to its solution in this case is not essentially different.
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